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transition to occur. For example, the guard for the transition from the “reading”
state to the “comparing state” in Figure 8.20 can be determined by examining the
use-case:

if (password input = 4 digits) then compare to stored password

In general, the guard for a transition usually depends upon the value of one or more
attributes of an object. In other words, the guard depends on the passive state of the
object.

An action occurs concurrently with the state transition or as a consequence of it
and generally involves one or more operations (responsibilities) of the object. For ex-
ample, the action connected to the password entered event (Figure 8.20) is an oper-
ation named validatePassword() that accesses a password object and performs a
digit-by-digit comparison to validate the entered password.

Sequence diagrams. The second type of behavioral representation, called a se-
quence diagram in UML, indicates how events cause transitions from object to ob-
ject. Once events have been identified by examining a use-case, the modeler creates
a sequence diagram—a representation of how events cause flow from one object to
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another as a function of time. In essence, the sequence diagram is a shorthand ver-
sion of the use-case. It represents key classes and the events that cause behavior to
flow from class to class.

Figure 8.21 illustrates a partial sequence diagram for the SafeHome security func-
tion. Each of the arrows represents an event (derived from a use-case) and indicates
how the event channels behavior between SafeHome objects. Time is measured ver-
tically (downward), and the narrow vertical rectangles represent time spent in pro-
cessing an activity. States may be shown along a vertical timeline.

The first event, system ready, is derived from the external environment and chan-
nels behavior to a Homeowner object. The homeowner enters a password. A re-
quest lookup event is passed to System which looks up the password in a simple
database and returns a result (found or not found) to ControlPanel (now in the com-
paring state). A valid password results in a password=correct event to System which
activates sensors with a request activation event. Ultimately, control is passed back
to the homeowner with the activation successful event.

Once a complete sequence diagram has been developed, all of the events that
cause transitions between system objects can be collated into a set of input events
and output events (from an object). This information is useful in the creation of an
effective design for the system to be built.
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’
Generalized Analysis Modeling in UML

-,
Q Obijective: Analysis modeling tools provide Control Center, developed by TogetherSoft

the capability to develop scenario-based (www.togethersoft.com).
models, class-based models, and behavioral models using  Enterprise Architect, developed by Sparx Systems
UML notation. (www.sparxsystems.com.au).

Object Technology Workbench (OTW), developed by
OTW Software (www.otwsoftware.com).

PowerDesigner, developed by Sybase {www.sybase.com).

Rational Rose, developed by Rational Corporation
(www.rational.com).

System Architect, developed by Popkin Software
{(www.popkin.com).

UML Studio, developed by Pragsoft Corporation
{www.pragsoft.com).

Representative Tools?” Visio, devZIoF?ed by Microsoft (www.microsoft.com).

The following tools support a full range of UML diagrams Visual UML, developed by Visal Object Modelers
required for analysis modeling:

Mechanics: Tools in this category support the full range
of UML diagrams required fo build an analysis model
(these tools also support design modeling). In addition to
diagramming, tools in this category (1) perform
consistency and correctness checks for all UML diagrams;
(2) provide links for design and code generation; (3) build
a database that enables the management and assessment
of large UML models required for complex systems.

{www.visualuml.com).

QrgoUML, an open source fool {argouml.tigris.org). /

The objective of analysis modeling is to create a variety of representations that depict
software requirements for information, function, and behavior. To accomplish this,
two different (but potentially complementary) modeling philosophies can be applied:
structured analysis and object-oriented analysis. Structured analysis views software
as an information transformer. It assists the software engineer in identifying data ob-
jects, their relationships, and the manner in which those data objects are transformed
as they flow through software processing functions. Object-oriented analysis exam-
ines a problem domain defined as a set of use-cases in an effort to extract classes that
define the problem. Each class has a set of attributes and operations. Classes are re-
lated to one another in a variety of different ways and are modeled using UML dia-
grams. The analysis model is composed of four modeling elements: scenario-based
models, flow models, class-based models, and behavioral models.

Scenario-based models depict software requirements from the user’s point of view.
The use-case—a narrative or template-driven description of an interaction between an
actor and the software—is the primary modeling element. Derived during requirement
elicitation, the use-case defines the key steps for a specific function or interaction. The

27 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.
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8.8. What is an analysis package, and how might it be used?

8.9. Develop CSPECs and PSPECs for the system you selected in Problem 8.6. Try to make your
model as complete as possible.

8.10. The department of public works for a large city has decided to develop a Web-based pot-
hole tracking and repair system (PHTRS). A description follows:

Citizens can log onto a Web site and report the location and severity of potholes. As pot-
holes are reported they are logged within a “public works department repair system” and
are assigned an identifying number, stored by street address, size (on a scale of 1 to 10),
location (middle, curb, etc.), district (determined from street address), and repair priority
(determined from the size of the pothole). Work order data are associated with each pot-
hole and include pothole location and size, repair crew identifying number, number of
people on a crew, equipment assigned, hours applied to repair, hole status (work in
progress, repaired, temporary repair, not repaired), amount of filler material used, and cost
of repair (computed from hours applied, number of people, material, and equipment used).
Finally, a damage file is created to hold information about reported damage due to the pot-
hole and includes the citizen’s name, address, phone number, type of damage, dollar
amount of damage. PHTRS is a Web-based system; all queries are to be made interactively.

Using structured analysis notation, develop an analysis model for PHTRS.
8.11. Describe the object-oriented terms encapsulation and inheritance.

8.12. Using the context-level DFD developed in Problem 8.7, develop level 1 and level 2 data
flow diagrams. Use a “grammatical parse” on the context-level processing narrative to get your-
self started. Remember to specify all information flow by labeling all arrows between bubbles.
Use meaningful names for each transform.

8.13. How does a state diagram for analysis classes differ from the state diagrams presented
for the complete system?

8.14. Develop a class model for the PHTRS system introduced in Problem 8.10.

8.15. Develop a complete set of CRC model index cards for the PHTRS system introduced in
Problem 8.10.

8.16. Conduct a review of the CRC index cards with your colleagues. How many additional
classes, responsibilities, and collaborators were added as a consequence of the review?

8.17. Describe the difference between an association and a dependency for an analysis class.

8.18. Draw a UML use-case diagram for the PHTRS system introduced in Problem 8.10. You'll
have to make a number of assumptions about the manner in which a user interacts with this
system.

8.19. Write a template-based use-case for the SafeHome home management system described
informally in the sidebar following Section 8.7.4.

Dozens of books have been published on structured analysis. Most cover the subject adequately,
but only a few do a truly excellent job. DeMarco and Plauger (Structured Analysis and System
Specification, Pearson, 1985) is a classic that remains a good introduction to the basic notation.
Books by Kendall and Kendall (Systems Analysis and Design, fifth edition, Prentice-Hall, 2002)
and Hoffer et al. (Modern Systems Analysis and Design, Addison-Wesley, third edition., 2001) are
worthwhile references. Yourdon's book (Modern Structured Analysis, Yourdon-Press, 1989) on
the subject remains among the most comprehensive coverage published to date.
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Allen (Data Modeling for Everyone, Wrox Press, 2002), Simpson and Witt (Data Modeling Es-
sentials, second edition, Coriolis Group, 2000) Reingruber and Gregory (Data Modeling Handbook,
Wiley, 1995) present detailed tutorials for creating industry-quality data models. An interesting
book by Hay (Data Modeling Patterns, Dorset House, 1995) presents typical data model patterns
that are encountered in many different businesses. A detailed treatment of behavioral modeling
can be found in Kowal (Behavior Models: Specifying User’s Expectations, Prentice-Hall, 1992).

Use-cases form the foundation of object-oriented analysis. Books by Bittner and Spence (Use
Case Modeling, Addison-Wesley, 2002), Cockburn [COCO1], Armour and Miller (Advanced Use-
Case Modeling: Software Systems, Addison-Wesley, 2000), and Rosenberg and Scott (Use-Case Dri-
ven Object Modeling with UML: A Practical Approach, Addison-Wesley, 1999) provide worthwhile
guidance in the creation and use of this important requirements elicitation and representation
mechanism.

Worthwhile discussions of UML have been written by Arlow and Neustadt [ARLO2],
Schmuller [SCHO2], Fowler and Scott (UML Distilled, second edition, Addison-Wesley, 1999),
Booch and his colleagues (The UML User Guide, Addison-Wesley, 1998), and Rumbaugh and his
colleagues (The Unified Modeling Language Reference Manual, Addison-Wesley, 1998).

The underlying analysis and design methods that support the Unified Process are discussed by
Larman (Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process, second edition, Prentice-Hall, 2001), Dennis and his colleagues (System Analysis
and Design: An Object-Oriented Approach with UML, Wiley, 2001), and Rosenberg and Scott (Use-
Case Driven Object Modeling with UML, Addison-Wesley, 1999). Balcer and Mellor (Executable UML:
A Foundation for Model Driven Architecture, Addison-Wesley, 2002) discuss the overall semantics
of UML, the models that can be created, and a way to consider UML as an executable language.
Starr (Executable UML: How to Build Class Models, Prentice-Hall, 2001) provides useful guidelines
and detailed suggestions for creating effective analysis'and design classes.

A wide variety of information sources on analysis modeling are available on the Internet. An
up-to-date list of World Wide Web references that are relevant to analysis modeling can be
found at the SEPA Web site:
http://www.mhhe.com/pressman.
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esign engineering encompasses the set of principles, concepts, and prac-

tices that lead to the development of a high-quality system or product. De-

sign principles (discussed in Chapter 5) establish an overriding philosophy
that guides the designer in the work that is performed. Design concepts must be
understood before the mechanics of design practice are applied, and design prac-
tice itself leads to the creation of various representations of the software that
serve as a guide for the construction activity that follows.

Design engineering is not a commonly used phrase in the software engineering
context. And yet, it should be. Design is a core engineering activity. In the early
1990s Mitch Kapor, the creator of Lotus 1-2-3, presented a “software design man-
ifesto” in Dr. Dobbs Journal. He said:

What is design? It's where you stand with a foot in two worlds—the world of tech-
nology and the world of people and human purposes—and you try to bring the two
together. ..

The Roman architecture critic Vitruvius advanced the notion that well-designed
buildings were those which exhibited firmness, commodity, and delight. The same
might be said of good software. Firmness: A program should not have any bugs that
inhibit its function. Commodity: A program should be suitable for the purposes for
which it was intended. Delight: The experience of using the program should be a plea-
surable one. Here we have the beginnings of a theory of design for software.

258
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The goal of design engineering is to produce a model or representation that exhibits
firmness, commodity, and delight. To accomplish this, a designer must practice diversi-
fication and then convergence. Belady [BEL81] states that “diversification is the acquisi-
tion of a repertoire of alternatives, the raw material of design: components, component
solutions, and knowledge, all contained in catalogs, textbooks, and the mind.” Once this
diverse set of information is assembled, the designer must pick and choose elements
from the repertoire that meet the requirements defined by requirements engineering
(Chapter 7) and the analysis model (Chapter 8). As this occurs, altematives are consid-
ered and rejected, and the design engineer converges on “one particular configuration
of components, and thus the creation of the final product” [BEL81].

Diversification and convergence demand intuition and judgment. These qualities
are based on experience in building similar entities, a set of principles and/or heuris-
tics that guide the way in which the model evolves, a set of criteria that enables qual-
ity to be judged, and a process of iteration that ultimately leads to a final design
representation.

Design engineering for computer software changes continually as new methods,
better analysis, and broader understanding evolve. Even today, most software design
methodologies lack the depth, flexibility, and quantitative nature that are normally
associated with more classical engineering design disciplines. However, methods for
software design do exist, criteria for design quality are available, and design nota-
tion can be applied. In this chapter, we explore the fundamental concepts and prin-
ciples that are applicable to all software design, the elements of the design model,
and the impact of patterns on the design process. In Chapters 10, 11, and 12 we ex-
amine a variety of software design methods as they are applied to architectural, in-
terface, and component-level design.

Software design sits at the technical kernel of software engineering and is applied
regardless of the software process model that is used. Beginning once software re-
quirements have been analyzed and modeled, software design is the last software
engineering action within the modeling activity and sets the stage for construction
(code generation and testing).
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acle of software engineering is the fransition from analysis to design and desig

Each of the elements of the analysis model (Chapter 8) provides information that
is necessary to create the four design models required for a complete specification
of design. The flow of information during software design is illustrated in Figure 9.1.
The analysis model, manifested by scenario-based, class-based, flow-oriented and
behavioral elements, feed the design task. Using design notation and design meth-
ods discussed in later chapters, design produces a data/class design, an architec-
tural design, an interface design, and a component design.

The data/class design transforms analysis-class models (Chapter 8) into design
class realizations and the requisite data structures required to implement the soft-
ware. The classes and relationships defined by CRC index cards and the detailed data
content depicted by class attributes and other notation provide the basis for the data
design activity. Part of class design may occur in conjunction with the design of soft-
ware architecture. More detailed class design occurs as each software component is
designed.

The architectural design defines the relationship between major structural ele-
ments of the software, the architectural styles and design patterns that can be used
to achieve the requirements defined for the system, and the constraints that affect

m Translating the analysis model into the design model

Class diagrams
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the way in which architectural can be implemented [SHA96]. The architectural de-
sign representation—the framework of a computer-based system—can be derived
from the system specification, the analysis model, and the interaction of subsystems
defined within the analysiS model.

The interface design describes how the software communicates with systems that
interoperate with it, and with humans who use it. An interface implies a flow of in-
formation (e.g., data and/or control) and a specific type of behavior. Therefore, us-
age scenarios and behavioral models provide much of the information required for
interface design.

The component-level design transforms structural elements of the software ar-
chitecture into a procedural description of software components. Information ob-
tained from the class-based models, flow models, and behavioral models serve as
the basis for component design.

0 ways of constructing a software design. Onewaynstomakensosimph&ﬁt
‘ wummkeﬂsotompllcnledlhmthemmem

During design we make decisions that will ultimately affect the success of soft-
ware construction and, as important, the ease with which software can be main-
tained. But why is design so important?

The importance of software design can be stated with a single word—quality.
Design is the place where quality is fostered in software engineering. Design pro-
vides us with representations of software that can be assessed for quality. Design
is the only way that we can accurately translate a customer’s requirements into a
finished software product or system. Software design serves as the foundation for
all the software engineering and software support activities that follow. Without
design, we risk building an unstable system—one that will fail when small changes
are made; one that may be difficult to test; one whose quality cannot be assessed
until late in the software process, when time is short and many do]lars have already
been spent.

Software design-is an iterative process through which requirements are translated
into a “blueprint” for constructing the software. Initially, the blueprint depicts a holis-
tic view of software. That is, the design is represented at a high level of abstraction—
a level that can be directly traced to the specific system objective and more detailed
data, functional, and behavioral requirements. As design iterations occur, subsequent
refinement leads to design representations at much lower levels of abstraction. These
can still be traced to requirements, but the connection is more subtle.
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Throughout the design process, the quality of the evolving design is assessed with
a series of formal technical reviews or design walkthroughs discussed in Chapter 26.
McGlaughlin [MCG91] suggests three characteristics that serve as a guide for the
evaluation of a good design:

e The design must implement all of the explicit requirements contained in the
analysis model, and it must accommodate all of the implicit requirements
desired by the customer.

o The design must be a readable, understandable guide for those who generate
code and for those who test and subsequently support the software.

¢ The design should provide a complete picture of the software, addressing the
data, functional, and behavioral domains from an implementation perspective.

Each of these characteristics is actually a goal of the design process. But how is each
of these goals achieved?

Quality guidelines. In order to evaluate the quality of a design representation, we
must establish technical criteria for good design. Later in this chapter, we discuss de-
sign concepts that also serve as software quality criteria. For the time being, we pre-
sent the following guidelines:

1. A design should exhibit an architecture that (a) has been created using rec-
ognizable architectural styles or patterns, (b) is composed of components
that exhibit good design characteristics (these are discussed later in this
chapter), and (c) can be implemented in an evolutionary fashion,' thereby fa-
cilitating implementation and testing. '

2. A design should be modular; that is, the software should be logically parti-
tioned into elements or subsystems.

3. A design should contain distinct representations of data, architecture, inter-
faces, and components.

4. A design should lead to data structures that are appropriate for the classes to
be implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional
characteristics.

6. A design should lead to interfaces that reduce the complexity of connections
between components and with the external environment.

1 For smaller systems, design can sometimes be developed linearly.
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7. Adesign should be derived using a repeatable method that is driven by infor-
mation obtained during software requirements analysis.

8. A design should be represented using a notation that effectively communi-
cates its meaning.

These design guidelines are not achieved by chance. Design engineering encourages
good design through the application of fundamental design principles, systematic
methodology, and thorough review.

Assessing Design Quality—

The Formal Technical Review
Design is important because it allows a software  plans the meeting, sets an agenda, and then runs the

team to assess the quality? of the software before it is meeting; the recorder takes notes so that nothing is
implemented—at a time when errors, omissions, or missed; the producer is the person whose work product
inconsistencies are easy and inexpensive to correct. But (e.g., the design of a software component] is being
how do we assess qudlity during design The software reviewed. Prior to the meeting, each person on the
can't be fested because there is no executable software to  review team is given a copy of the design work product
test. What to do? and is asked to read it, looking for errors, omissions, or

During design, quality is assessed by conducting a ambiguity. When the meeting commences, the intent is to
series of formal technical reviews (FTRs). FTRs are note all problems with the work product so that they can
discussed in detail in Chapter 26, but it's worth be corrected before implementation begins. The FTR
providing a summary of the technique at this point. An typically lasts between 90 minutes and two hours. At the
FTR is a meeting conducted ‘by members of the software conclusion of the FTR, the review team determines
team. Usually two, three, or four people participate whether further actions are required on the part of the
depending on the scope of the design information to be producer before the design work product can be
reviewed. Each person plays a role: the review leader approved as part of the final design model.

't something you loy on top of subjects and objects like finsel on a Chrisimas tree.”

Quality attributes. Hewlett-Packard [GRA87] developed a set of software quality
attributes that has been given the acronym FURPS—functionality, usability, reliabil-
ity, performance, and supportability. The FURPS quality attributes represent a target
for all software design:

e Functionality is assessed by evaluating the feature set and capabilities of the
program, the generality of the functions that are delivered, and the security of
the overall system.

2 The quality factors discussed in Chapter 15 can assist the review team as it assesses quality.
3 You might consider reviewing Section 26.4 at this time. FTRs are a critical part of the design process
and are an important mechanism for achieving design quality.
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e ‘ e Usability is assessed by considering human factors (Chapter 12), overall
aesthetics, consistency, and documentation.

Software designers
tend to focus on the
problem to be solved.
Just don’t forget that

the FURPS attributes

ore always part of the
problem. They must be
considered.

N

3.

e Reliability is evaluated by measuring the frequency and severity of failure, the
accuracy of output results, the mean-time-to-failure (MTTF), the ability to
recover from failure, and the predictability of the program.

e Performance is measured by processing speed, response time, resource
consumption, throughput, and efficiency.

e Supportability combines the ability to extend the program (extensibility),

adaptability, serviceability—these three attributes represent a more common
term, maintainability—in addition, testability, compatibility, configurability
(the ability to organize and control elements of the software configuration,
(Chapter 27), the ease with which a system can be installed, and the ease
with which problems can be localized.

Not every software quality attribute is weighted equally as the software design is de-
veloped. One application may stress functionality with a special emphasis on secu-
rity. Another may demand performance with particular emphasis on processing
speed. A third might focus on reliability. Regardless of the weighting, it is important
to note that these quality attributes must be considered as design commences, not
after the design is complete and construction has begun.

Generic Task Set for Design

1. Examine the information domain
model and design appropriate data
structures for data objects and their attributes.

2. Using the analysis model, select an architectural style

{pattern) that is appropriate for the software.

Partition the analysis model into design subsystems

and allocate these subsystems within the architecture.

Be cerfain that each subsystem is functionally
cohesive.

Design subsystem interfaces.

Allocate analysis classes or functions to each
subsystem.

Create a set of design classes or components.

Translate each analysis class description info a
design class.

Check each design class against design criteria;
consider inheritance issues.

Define methods and messages associated with each
design dlass.

M\

Evaluate and select design patterns for a design
class or a subsystem.

Review design classes and revise as required.

Design any interface required with external systems

or devices.

Design the user interface.

Review results of task analysis.

Specify action sequence based on user scenarios.

Create behavioral model of the interface.

Define inferface objects, control mechanisms.

Review the interface design and revise as required.

Conduct component-level design.

Specify all algorithms at a relatively low level of
abstraction.

Refine the interface of each component.

Define component-level data structures.

Review each component and correct all errors
uncovered.

Develop a deployment model. }
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the problem ot hand.
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even betfer.

A set of fundamental software design concepts has evolved over the history of soft-
ware engineering. Although the degree of interest in each concept has varied over
the years, each has stood the test of time. Each provides the software designer with
a foundation from which more sophisticated design methods can be applied.

M. A. Jackson [JAC75] once said: “The beginning of wisdom for a [software engi-
neer] is to recognize the difference between getting a program to work, and getting
it right.” Fundamental software design concepts provide the necessary framework
for “getting it right.”

9.3.1 Abstraction

When we consider a modular solution to any problem, many levels of abstraction can
be posed. At the highest level of abstraction, a solution is stated in broad terms us-
ing the language of the problem environment. At lower levels of abstraction, a more
detailed description of the solution is provided.

dﬂleftmdnmenml ways that we as humans cope with complexily.

As we move through different levels of abstraction, we work to create procedural
and data abstractions. A procedural abstraction refers to a sequence of instructions
that have a specific and limited function. The name of procedural abstraction implies
these functions, but specific details are suppressed. An example of a procedural ab-
straction would be the word open for a door. Open implies a long sequence of pro-
cedural steps (e.g., walk to the door, reach out and grasp knob, turn knob and pull
door, step away from moving door, etc.).* _

A data abstraction is a named collection of data that describes a data object. In the
context of the procedural abstraction open, we can define a data abstraction called
door. Like any data object, the data abstraction for door would encompass a set of
attributes that describe the door (e.g., door type, swing direction, opening mechanism,
weight, dimensions). It follows that the procedural abstraction open would make use of
information contained in the attributes of the data abstraction door.

9.3.2 Architecture

Software architecture alludes to “the overall structure of the software and the ways in
which that structure provides conceptual integrity for a system” [SHA95a]. In its sim-
plest form, architecture is the structure or organization of program components

4 Itshould be noted, however, that one set of operations can be replaced with another, as long as the
function implied by the procedural abstraction remains the same. Therefore, the steps required to
implement open would change dramatically if the door were automatic and attached to a sensor.
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(modules), the manner in which these components interact, and the structure of data
that are used by the components. In a broader sense, however, components can be
generalized to represent major system elements and their interactions.

i the dovelopment work product that gives the highest return on investment

One goal of software design is to derive an architectural rendering of a system.
This rendering serves as a framework from which more detailed design activities are
conducted. A set of architectural patterns enable a software engineer to reuse
design-level concepts.

The architectural design can be represented using one or more of a number of dif-
ferent models [GAR95]. Structural models represent architecture as an organized col-
lection of program components. Framework models increase the level of design
abstraction by attempting to identify repeatable architectural design frameworks
that are encountered in similar types of applications. Dynamic models address the be-
havioral aspects of the program architecture, indicating how the structure or system
configuration may change as a function of external events. Process models focus on
the design of the business or technical process that the system must accommodate.
Finally, functional models can be used to represent the functional hierarchy of a sys-
tem. Architectural design is discussed in Chapter 10.

9.3.3 Patterns

Brad Appleton defines a design pattern in the following manner: “A pattern is a
named nugget of insight which conveys the essence of a proven solution to a recur-
ring problem within a certain context amidst competing concerns” [APP98]. Stated
in another way, a design pattern describes a design structure that solves a particular
design problem within a specific context and amid “forces” that may have an impact
on the manner in which the pattern is applied and used.

m which occurs over and over ogain in our environment, and then
, in such o way that you can use this solution o miflin fimes over,

bl
The intent of each design pattern is to provide a description that enables a de-

signer to determine (1) whether the pattern is applicable to the current work,
(2) whether the pattern can be reused (hence, saving design time), and (3) whether
the pattern can serve as a guide for developing a similar, but functionally or struc-
turally different pattern. Design patterns are discussed in more detail in Section 9.5.



ana’

Don't overmodularize.
The simplicity of each
small module will

be overshadowed by
the complexity of
integrafion.

CHAPTER 9 DESIGN ENGINEERING 267

9.3.44/ Modularity

Software architecture and design patterns embody modularity; that is, software is di-
vided into separately named and addressable components, sometimes calied mod-
ules, that are integrated to satisfy problem requirements.

It has been stated that “modularity is the single attribute of software that allows a
program to be intellectually manageable” [MYE78]. Monolithic software (i.e., a large
program composed of a single module) cannot be easily grasped by a software en-
gineer. The number of control paths, span of reference, number of variables, and
overall complexity would make understanding close to impossible. To illustrate this
point, consider the following argument based on observations of human problem
solving.

Consider two problems, p, and p,. If the perceived complexity of p, is greater than
the perceived complexity of p,, it follows that the effort required to solve p, is greater
than the effort required to solve p,. As a general case, this result is intuitively obvi-
ous. It does take more time to solve a difficult problem.

It also follows that the perceived complexity of two problems when they are com-
bined is often greater than the sum of the perceived complexity when each is taken
separately. This leads to a “divide and conquer” strategy—it's easier to solve a com-
plex problem when you break it into manageable pieces. This has important impli-
cations with regard to modularity and software. It is, in fact, an argument for
modularity.

It is possible to conclude that, if we subdivide software indefinitely, the effort
required to develop it will become negligibly small! Unfortunately, other forces
come into play, causing this conclusion to be (sadly) invalid. Referring to Figure
9.2, the effort (cost) to develop an individual software module does decrease as
the total number of modules increases. Given the same set of requirements, more
modules means smaller individual size. However, as the number of modules
grows, the effort (cost) associated with integrating the modules also grows. These

Modularity
and software
cost

1 Total software cost

1
‘\ I’ Cost to integrate

Cost or effort

1 I i Cost/module

Number of modules
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characteristics lead to a total cost or effort curve shown in the figure. There is a
number, M, of modules that would result in minimum development cost, but we do
not have the necessary sophistication to predict M with assurance.

The curves shown in Figure 9.2 do provide useful guidance when modularity is con-
sidered. We should modularize, but care should be taken to stay in the vicinity of M.
Undermodularity or overmodularity should be avoided. But how do we know the vicin-
ity of M? How modular should we make software? The answers to these questions re-
quire an understanding of other design concepts considered later in this chapter.

We modularize a design (and the resulting program) so that development can be
more easily planned; software increments can be defined and delivered; changes can
be more easily accommodated; testing and debugging can be conducted more effi-
ciently, and long-term maintenance can be conducted without serious side effects.

9.3.5 Information Hiding

The concept of modularity leads every software designer to a fundamental question:
How do we decompose a software solution to obtain the best set of modules? The
principle of information hiding [PAR72] suggests that modules be “characterized by
design decisions that (each) hides from all others.” In other words, modules should
be specified and designed so that information (algorithms and data) contained within
a module is inaccessible to other modules that have no need for such information.

Hiding implies that effective modularity can be achieved by defining a set of in-
dependent modules that communicate with one another only that information nec-
essary to achieve software function. Abstraction helps to define the procedural (or
informational) entities that make up the software. Hiding defines and enforces ac-
cess constraints to both procedural detail within a module and any local data struc-
ture used by the module [ROS75].

The use of information hiding as a design criterion for modular systems provides
the greatest benefits when modifications are required during testing and later, dur-
ing software maintenance. Because most data and procedure are hidden from other
parts of the software, inadvertent errors introduced during modification are less
likely to propagate to other locations within the software.

9.3.6 Functional Independence

The concept of functional independence is a direct outgrowth of modularity and the
concepts of abstraction and information hiding. In landmark papers on software de-
sign Wirth [WIR71] and Parnas [PAR72] allude to refinement techniques that enhance
module independence. Later work by Stevens, Myers, and Constantine [STE74] so-
lidified the concept.

Functional independence is achieved by developing modules with “single-
minded” function and an “aversion” to excessive interaction with other modules.
Stated another way, we want to design software so that each module addresses a
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specific subfunction of requirements and has a simple interface when viewed from
other parts of the program structure. It is fair to ask why independence is important.

Software with effective modularity, that is, independent modules, is easier to de-
velop because function may be compartmentalized and interfaces are simplified
(consider the ramifications when development is conducted by a team). Independent
modules are easier to maintain (and test) because secondary effects caused by de-
sign or code modification are limited, error propagation is reduced, and reusable
modules are possible. To summarize, functional independence is a key to good de-
sign, and design is the key to software quality.

Independence is assessed using two qualitative criteria: cohesion and coupling.
Cohesion is an indication of the relative functional strength of a module. Coupling is
an indication of the relative interdependence among modules.

Cohesion is a natural extension of the information hiding concept described in
Section 9.3.5. A cohesive module performs a single task, requiring little interaction
with other components in other parts of a program. Stated simply, a cohesive mod-
ule should (ideally) do just one thing. '

Coupling is an indication of interconnection among modules in a software struc-
ture. Coupling depends on the interface complexity between modules, the point at
which entry or reference is made to a module, and what data pass across the inter-
face. In software design, we strive for lowest possible coupling. Simple connectivity
among modules results in software that is easier to understand and less prone to a
“ripple effect” [STE74], caused when errors occur at one location and propagate
throughout a system.

9.3.7 Refinement

Stepwise refinement is a top-down design strategy originally proposed by Niklaus
Wirth [WIR71]. A program is developed by successively refining levels of proce-
dural detail. A hierarchy is developed by decomposing a macroscopic statement
of function (a procedural abstraction) in a stepwise fashion until programming
language statements are reached. '

Refinement is actually a process of elaboration. We begin with a statement of func-
tion (or description of data) that is defined at a high level of abstraction. That is, the
statement describes function or information conceptually but provides no informa-
tion about the internal workings of the function or the internal structure of the data.
Refinement causes the designer to elaborate on the original statement, providing
more and more detail as each successive refinement (elaboration) occurs.

Abstraction and refinement are complementary concepts. Abstraction enables
a designer to specify procedure and data and yet suppress low-level details.
Refinement helps the designer to reveal low-level details as design progresses.
Both concepts aid the designer in creating a complete design model as the design
evolves.
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found 10,000 ways that won't work.”

9.3.8 Refactoring

An important design activity suggested for many agile methods (Chapter 4), refac-
toring is a reorganization technique that simplifies the design (or code) of a compo-
nent without changing its function or behavior. Fowler [FOW99] defines refactoring
in the following manner: “Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior of the code [design] yet im-
proves its internal structure.”

When software is refactored, the existing design is examined for redundancy, un-
used design elements, inefficient or unnecessary algorithms, poorly constructed or
inappropriate data structures, or any other design failure that can be corrected to
yield a better design. For example, a first design iteration might yield a component
that exhibits low cohesion (i.e., it performs three functions that have only limited re-
lationship to one another). The designer may decide that the component should be
refactored into three separate components, each exhibiting high cohesion. The re-
sult will be software that is easier to integrate, easier to test, and easier to maintain.

SAFEHOME
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9.3.9 Design Classes

In Chapter 8, we noted that the analysis model defines a complete set of analysis
classes. Each of these classes describes some element of the problem domain, fo-
cusing on aspects of the problem that are user or customer visible. The level of ab-
straction of an analysis class is relatively high.

As the design model evolves, the software team must define a set of design classes
that (1) refine the analysis classes by providing design detail that will enable the
classes to be implemented, and (2) create a new set of design classes that implement
a software infrastructure to support the business solution. Five different types of de-
sign classes, each representing a different layer of the design architecture are sug-
gested [AMBO1]:

What types e User interface classes define all abstractions that are necessary for human-
W of dasses computer interaction (HCI). In many cases, HCI occurs within the context of a
does the designer metaphor (e.g., a checkbook, an order form, a fax machine) and the design
reate? classes for the interface may be visual representations of the elements of the
metaphor.

e Business domain classes are often refinements of the analysis classes defined
earlier. The classes identify the attributes and services (methods) that are
required to implement some element of the business domain.

e Process classes implement lower-level business abstractions required to fully
manage the business domain classes.

e Persistent classes represent data stores (e.g., a database) that will persist
beyond the execution of the software.

e System classes implement software management and control functions that
enable the system to operate and communicate within its computing envi-
ronment and with the outside world.

As the design model evolves, the software team must develop a complete set of at-
tributes and operations for each design class. The level of abstraction is reduced as
each analysis class is transformed into a design representation. That is, analysis



272

formed” design
dass?

PART TWO SOFTWARE ENGINEERING PRACTICE

classes represent objects (and associated services that are applied to them) using the
jargon of the business domain. Design classes present significantly more technical
detail as a guide for implementation.

Arlow and Neustadt [ARLO2] suggest that each design class be reviewed to en-
sure that it is “well-formed.” They define four characteristics of a well-formed de-
sign class:

Complete and sufficient. A design class should be the complete encapsula-
tion of all attributes and methods that can reasonably be expected (based on a
knowledgeable interpretation of the class name) to exist for the class. For exam-
ple, the class Scene defined for video editing software is complete only if it con-
tains all attributes and methods that can reasonably be associated with the
creation of a video scene. Sufficiency ensures that the design class contains only
those methods that are sufficient to achieve the intent of the class, no more and
no less.

Primitiveness. Methods associated with a design class should be focused on
accomplishing one service for the class. Once the service has been implemented
with a method, the class should not provide another way to accomplish the same
thing. For example, the class VideoClip of the video editing software might have
attributes start-point and end-point to indicate the start and end points of the clip
(note that the raw video loaded into the system may be longer than the clip that is
used). The methods, setStartPoint() and setEndPoint() provide the only means for es-
tablishing start and end points for the clip.

High cohesion. A cohesive design class has a small, focused set of responsi-
bilities and single-mindedly applies attributes and methods to implement those
responsibilities. For example, the class VideoClip of the video editing software
might contain a set of methods for editing the video clip. As long as each
method focuses solely on attributes associated with the video clip, cohesion is
maintained.

Low coupling. Within the design model, it is necessary for design classes to
collaborate with one another. However, collaboration should be kept to an accept-
able minimum. If a design model is highly coupled (all design classes collaborate

~ with all other design classes) the system is difficult to implement, to test, and to

maintain over time. In general, design classes within a subsystem should have only
limited knowledge of classes in other subsystems. This restriction, called the Law
of Demeter [LIE03], suggests that a method should only send messages to methods
in neighboring classes.®

5 A less formal way of stating the Law of Demeter is “Each unit should only talk to its friends; don't
talk to strangers.”
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The design model can be viewed in two different dimensions as illustrated in Figure 9.4.
The process dimension indicates the evolution of the design model as design tasks are
executed as part of the software process. The abstraction dimension represents the
level of detail as each element of the analysis model is transformed into a design
equivalent and then refined iteratively. Referring to the figure, the dashed line indicates
the boundary between the analysis and design models. In some cases, a clear distinc-

P tion between the analysis and design models is possible. In other cases, the analysis
% model slowly blends into the design and a clear distinction is less obvious.
POINT The elements of the design model use many of the same UML diagrams that were
The design model has ;5 iy the analysis model. The difference is that these diagrams are refined and
four mojor elements: ) . ) , o .
dato, architecture elaborated as part of design; more implementation-specific detail is provided, and
[Om‘llonemS’ und’ architectural structure and style, components that reside within the architecture, and
interface. interfaces between the components and with the outside world are all emphasized.
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 is bod design, not no design ot all.” L
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It is important to mention however, that model elements noted along the hori-
zontal axis are not always developed in a sequential fashion. In most cases prelimi-
nary architectural design sets the stage and is followed by interface design and
component-level design, which often occur in parallel. The deployment model is
usually delayed until the design has been fully developed.

9.4.1 Data Design Elements

Like other software engineering activities, data design (sometimes referred to as data
architecting) creates a model of data and/or information that is represented at a high
level of abstraction (the customer/user’s view of data). This data model is then re-
fined into progressively more implementation-specific representations that can be
processed by the computer-based system. In many software applications, the archi-
tecture of the data will have a profound influence on the architecture of the software
that must process it.

The structure of data has always been an important part of software design. At
the program component level, the design of data structures and the associated al-
gorithms required to manipulate them is essential to the creation of high-quality ap-
plications. At the application level, the translation of a data model (derived as part
of requirements engineering) into a database is pivotal to achieving the business ob-
jectives of a system. At the business level, the collection of information stored in dis-
parate databases and reorganized into a “data warehouse” enables data mining or
knowledge discovery that can have an impact on the success of the business itself.
In every case, data design plays an important role. Data design is discussed in more
detail in Chapter 10.

9.4.2 Architectural Design Elements

The architectural design for software is the equivalent to the floor plan of a house. The
floor plan depicts the overall layout of the rooms, their size, shape, and relationship
to one another, and the doors and windows that allow movement into and out of the
rooms. The floor plan gives us an overall view of the house. Architectural design el-
ements give us an overall view of the software.

the drufting fable or o sledge hammer on the construction ste.” -

The architectural model {SHA96] is derived from three sources: (1) information
about the application domain for the software to be built; (2) specific analysis model
elements such as data flow diagrams or analysis classes, their relationships and col-
laborations for the problem at hand, and (3) the availability of architectural patterns
(Section 9.5) and styles (Chapter 10).



276

N
Ve,
POINT
There are three parts
to the inferface design
element: the user
interfoce; interfaces fo
systems external to
the application, and
interfaces to
components within the
application.

PART TWO SOFTWARE ENGINEERING PRACTICE

9.4.3 Interface Design Elements

The interface design for software is the equivalent to a set of detailed drawings (and
specifications) for the doors, windows, and external utilities of a house. These draw-
ings depict the size and shape of doors and windows, the manner in which they op-
erate, the way in which utilities connections (e.g., water, electrical, gas, telephone)
come into the house and are distributed among the rooms depicted in the floor plan.
They tell us where the door bell is located, whether an intercom is to be used to an-
nounce a visitor’s presence and how a security system is to be installed. In essence,
the detailed drawings (and specifications) for the doors, windows, and external util-
ities tell us how things and information flow into and out of the house and within the
rooms that are part of the floor plan. The interface design elements for software tell
how information flows into and out of the system and how it is communicated
among the components defined as part of the architecture.

: ‘more fomilior with bod design than good design. It i, in effedt, cond'mmed o prefer Ilad Mgn
what it lives with. The new becomes threatening, the old reassuring.” :

There are three important elements of interface design: (1) the user interface (Ul);
(2) external interfaces to other systems, devices, networks, or other producers or
consumers of information; and (3) internal interfaces between various design com-
ponents. These interface design elements allow the software to communicate exter-
nally and enable internal communication and collaboration among the components
that populate the software architecture.

Ul design is a major software engineering action and is considered in detail in
Chapter 12. The design of a Ul incorporates aesthetic elements (e.g., layout, color,
graphics, interaction mechanisms), ergonomic elements (e.g., information layout
and placement, metaphors, Ul navigation), and technical elements (e.g., Ul patterns,
reusable components). In general, the Ul is a unique subsystem within the overall
application architecture.

The design of external interfaces requires definitive information about the entity
to which information is sent or received. In every case, this information should be
collected during requirements engineering (Chapter 7) and verified once the inter-
face design commences.® The design of external interfaces should incorporate error
checking and (when necessary) appropriate security features.

The design of internal interfaces is closely aligned with component-level design
(Chapter 11). Design realizations of analysis classes represent all operations and
the messaging schemes required to enable communication and collaboration be-
tween operations in various classes. Each message must be designed to accom-

6 It is not uncommon for interface characteristics to change with time. Therefore, a designer should
ensure that the specification for the interface is kept up-to-date.



UML interface
representation

for Control-
Panel

Mmlﬁ

CHAPTER 9 DESIGN ENGINEERING 277

o <<Interface>>
KeyPad

1 readKeystroke( }
decodeKey }

modate the requisite information transfer and the specific functional requirements
of the operation that has been requested.

In some cases, an interface is modeled in much the same way as a class. UML de-
fines an interface in the following manner [OMGO1]: “An interface is a specifier for
the externally-visible [public] operations of a class, component, or other classifier
(including subsystems) without specification of internal structure.” Stated more sim-
ply, an interface is a set of operations that describes some part of the behavior of a
class and provides access to those operations.

For example, the SafeHome security function makes use of a control panel that al-
lows a homeowner to control certain aspects of the security function. In an advanced
version of the system, control panel functions may be implemented via a wireless
PDA or a mobile phone.

The ControlPanel class (Figure 9.5) provides the behavior associated with a key-
pad, and, therefore, it must implement operations readKeyStroke() and decodeKey(). If
these operations are to be provided to other classes (in this case, WirelessPDA and
MobilePhone), it is useful to define an interface as shown in the figure. The inter-
face, named KeyPad, is shown as an <<interface>> stereotype or as a small, labeled
circle connected to the class with a line. The interface is defined with no attributes
and the set of operations that are necessary to achieve the behavior of a keypad.

Ka

'&@mn}mmmmd&s&gnmlﬁngmmlﬂdyw'
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The dashed line with an open triangle at its end (Figure 9.5) indicates that the
ControlPanel class provides KeyPad operations as part of its behavior. In UML, this
is characterized as a realization. That is, part of the behavior of ControlPanel will
be implemented by realizing KeyPad operations. These operations will be provided
to other classes that access the interface.

9.4.4 Component-Level Design Elements

The component-level design for software is equivalent to a set of detailed drawings
(and specifications) for each room in a house. These drawings depict wiring and
plumbing within each room, the location of electrical receptacles and switches,
faucets, sinks, showers, tubs, drains, cabinets, and closets. They also describe the
flooring to be used, the moldings to be applied, and every other detail associated
with a room. The component-level design for software fully describes the internal
detail of each software component. To accomplish this, the component-level design
defines data structures for all local data objects and algorithmic detail for all pro-
cessing that occurs within a component and an interface that allows access to all
component operations (behaviors).

Within the context of object-oriented software engineering, a component is rep-
resented in UML diagrammatic form as shown in Figure 9.6. In this figure, a compo-
nent named SensorManagement (part of the SafeHome security function) is
represented. A dashed arrow connects the component to a class named Sensor that
is assigned to it. The SensorManagement component performs all functions asso-
ciated with SafeHome sensors including monitoring and configuring them. Further
discussion of component diagrams is presented in Chapter 11.

The design details of a component can be modeled at many different levels of ab-
straction. An activity diagram can be used to represent processing logic. Detailed
procedural flow for a component can be represented using either pseudocode (a pro-
gramming language-like representation described in Chapter 11) or some diagram-
matic form (e.g., an activity diagram or flowchart).

UML
component
diagram for
SensorMan-
agement
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9.4.5 Deployment-Level Design Elements

Deployment-level design elements indicate how software functionality and subsys-
tems will be allocated within the physical computing environment that will support
the software. For example, the elements of the SafeHome product are configured to
operate within three primary computing environments—a home-based PC, the Safe-
Home control panel, and a server housed at CPI Corp. {providing Internet-based ac-
cess to the system).

During design, a UML deployment diagram is developed and then refined as
shown in Figure 9.7. In the figure, three computing environments are shown (in ac-
tuality, there would be more including sensors, cameras, and others). The subsystems
(functionality) housed within each computing element are indicated. For example, the
personal computer houses subsystems that implement security, surveillance, home
management and communications features. In addition, an external access subsys-
tem has been designed to manage all attempts to access the SafeHome system from
an external source. Each subsystem would be elaborated to indicate the components
that it implements.

The diagram shown in Figure 9.7 is in descriptor form. This means that the de-
ployment diagram shows the computing environment but does not explicitly indicate
configuration details. For example, the “personal computer” is not further identified.
It could be a “Wintel” PC or a Macintosh, a Sun workstation or a Linux-box. These




280

PART TWO SOFTWARE ENGINEERING PRACTICE

details are provided when the deployment diagram is revisited in instance form dur-
ing latter stages of design or as construction begins. Each instance of the deployment
(a specific, named hardware configuration) is identified.
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Design Pattern Template

Pattern name—describes the essence of the Participants—describes the responsibilities of the classes
pattern in a short but expressive name. that are required to implement the pattern.
Intent—describes the pattern and what it does. Collaborations—describes how the participants
Also-known-as—lists any synonyms for the pattern. collaborate to carry out their responsibilities.
Motivation—provides an example of the problem. Consequences—describes the “design forces” that affect
Applicability—notes specific design situations in which the the pattern and the potential trade-offs that must be
pattern is applicable. considered when the pattern is implemented.
Structure—describes the classes that are required to Related patterns—cross-references related design
implement the pattern. patterns.
NG J

The best designers in any field have an uncanny ability to see patterns that character-
ize a problem and corresponding patterns that can be combined to create a solution.
Throughout the design process, a software engineer should look for every opportu-
nity to reuse existing design patterns (when they meet the needs of the design) rather
than creating new ones.

9.5.1 Describing a Design Pattern

Mature engineering disciplines make use of thousands of design patterns. For ex-
ample, a mechanical engineer uses a two-step, keyed shaft as a design pattern. In-
herent in the pattern are attributes (the diameters of the shaft, the dimensions of the
keyway, etc.) and operations (e.g., shaft rotation, shaft connection). An electrical en-
gineer uses an integrated circuit (an extremely complex design pattern) to solve a
specific element of a new problem. Design patterns may be described using the tem-
plate [MAIO3] shown in the sidebar.

A description of the design pattern may also consider a set of design forces. De-
sign forces describe nonfunctional requirements (e.g., ease of maintainability, porta-
bility) associated the software for which the pattern is to be applied. In addition
forces define the constraints that may restrict the manner in which the design is to
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be implemented. In essence, design forces describe the environment and conditions
that must exist to make the design pattern applicable. The pattern characteristics
(classes, responsibilities, and collaborations) indicate the attributes of the design
that may be adjusted to enable the pattern to accommodate a variety of problems
[GAM95]. These attributes represent characteristics of the design that can be
searched (e.g., via a database) so that an appropriate pattern can be found. Finally,
guidance associated with the use of a design pattern provides an indication of the
ramifications of design decisions.

‘/W—.—mmimyouulmyshavem finish Ihemywndfmddwtlbﬂnhwm

The names of design patterns should be chosen with care. One of the key techni-
cal problems in software reuse is the inability to find existing reusable patterns when
hundreds or thousands of candidate patterns exist. The search for the “right” pattern
is aided immeasurably by a meaningful pattern name.

9.5.2 Using Patterns in Design

Design patterns can be used throughout software design. Once the analysis model
(Chapter 8) has been developed, the designer can examine a detailed representation
of the problem to be solved and the constraints that are imposed by the problem. The
problem description is examined at various levels of abstraction to determine if it is
amenable to one or more of the following types of design patterns:

Architectural patterns. These patterns define the overall structure of the soft-
ware, indicate the relationships among subsystems and software components, and
define the rules for specifying relationships among the elements (classes, pack-
ages, components, subsystems) of the architecture.

Design patterns. These patterns address a specific element of the design such
as an aggregation of components to solve some design problem, relationships
among components, or the mechanisms for effecting component-to-component
communication.

Idioms. Sometimes called coding patterns, these language-specific patterns
generally implement an algorithmic element of a component, a specific interface
protocol, or a mechanism for communication among components.

Each of these pattern types differs in the level of abstraction with which it is repre-
sented and the degree to which it provides direct guidance for the construction ac-
tivity (in this case, coding) of the software process.

9.5.3 Frameworks

In some cases it may be necessary to provide an implementation-specific skeletal in-
frastructure, called a framework, for design work. That is, the designer may select a
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“reusable mini-architecture that provides the generic structure and behavior for a
family of software abstractions, along with a context . . . which specifies their col-
laboration and use within a given domain” [APP98].

A framework is not an architectural pattern, but rather a skeleton with a collec-
tion of “plug points” (also called hooks and slots) that enable it to be adapted to a spe-
cific problem domain. The plug points enable a designer to integrate problem
specific classes or functionality within the skeleton. In an object-oriented context, a
framework is a collection of cooperating classes.

In essence, the designer of a framework will argue that one reusable mini-
architecture is applicable to all software to be developed within a limited domain of
application. To be most effective, frameworks are applied with no changes. Addi-
tional design elements may be added, but only via the plug points that allow the de-
signer to flesh out the framework skeleton.

2 6 Sua ﬂﬂ R¥ e

Design engineering commences as the first iteration of requirements engineering
comes to a conclusion. The intent of software design is to apply a set of principles,
concepts, and practices that lead to the development of a high-quality system or
product. The goal of design is to create a model of software that will implement all
customer requirements correctly and bring delight to those who use it. Design engi-
neers must sift through many design alternatives and converge on a solution that
best suits the needs of project stakeholders.

The design process moves from a “big picture” view of software to a more narrow
view that defines the detail required to implement a system. The process begins by
focusing on architecture. Subsystems are defined; communication mechanisms
among subsystems are established; components are identified; and a detailed de-
scription of each component is developed. In addition, external, internal, and user
interfaces are designed.

Design concepts have evolved over the first half-century of software engineering
work. They describe attributes of computer software that should be present regard-
less of the software engineering process that is chosen, the design methods that are
applied, or the programming languages that are used.

The design model encompasses four different elements. As each of these ele-
ments is developed, a more complete view of the design evolves. The architectural
element uses information derived from the application domain, the analysis model,
and available catalogs for patterns and styles to derive a complete structural repre-
sentation of the software, its subsystems and components. Interface design elements
model external and internal interfaces and the user interface. Component-level ele-
ments define each of the modules (components) that populate the architecture. Fi-
nally, deployment-level design elements allocate the architecture, its components,
and the interfaces to the physical configuration that will house the software.
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Pattern-based design is a technique that reuses design elements that have proven
successful in the past. Each architectural pattern, design pattern, or idiom is cata-
loged, thoroughly documented, and carefully considered as it is assessed for inclu-
sion in a specific application. Frameworks, an extension of patterns, provide an
architectural skeleton for the design of complete subsystems within a specific appli-
cation domain.

[AMBO1] Ambler, S., The Object Primer, Cambridge Univ. Press, 2nd ed., 2001].

[APP98] Appleton, B., “Patterns and Software: Essential Concepts and Terminology,” download-
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9.1. If a software design is not a program (and it.isn't), then what is it?

9.2. Do you design software when you “write” a program? What makes software design difter-
ent from coding?
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9.3. Describe software architecture in your own words.

9.4. Visit a design patterns repository (on the Web) and spend a few minutes browsing through
the patterns. Pick one and present it to your class.

9.5. Provide examples of three data abstractions and the procedural abstractions that can be
used to manipulate them.

9.6. Apply a "stepwise refinement approach” to develop three different levels of procedural ab-
straction for one or more of the following programs: (a) Develop a check writer that, given a nu-
meric dollar amount, will print the amount in words normally required on a check; (b) Iteratively
solve for the roots of a transcendental equation; (c) Develop a simple task scheduling algorithm
for an operating system.

9.7. When should a modular design be implemented as monolithic software? How can this be
accomplished? Is performance the only justification for implementation of monolithic software?

9.8. Suggest a design pattern that you encounter in a category of everyday things (e.g., con-
sumer electronics, automobiles, appliances). Fully document the pattern using the template
provided in Section 9.5.

9.9. Discuss the relationship between the concept of information hiding as an attribute of ef-
fective modularity and the concept of module independence.

9.10. Is there a case when complex problems require less effort to solve? How might such a
case affect the argument for modularity?

9.11. How are the concepts of coupling and software portability related? Provide examples to
support your discussion.

9.12. Examine the task set presented for design. Where is quality assessed within the task set?
How is this accomplished?

9.13. Do a bit of research on Extreme Programming and write a brief paper on the use of refac-
toring for that agile software development process.

9.14. How do we assess the quality of a software design?

Donald Norman has written two books (The Design of Everyday Things, Doubleday, 1990, and The
Psychology of Everyday Things, HarperCollins, 1988) that have become classics in the design lit-
erature and “must” reading for anyone who designs anything that humans use. Adams {Con-
ceptual Blockbusting, third edition, Addison-Wesley, 1986) has written a book that is essential
reading for designers who want to broaden their way of thinking. Finally, a classic text by Polya
(How to Solve It, Princeton University Press, second edition, 1988) provides a generic problem-
solving process that can help software designers when they are faced with complex problems.

Following in the same tradition, Winograd et al. (Bringing Design to Software, Addison-
Wesley, 1996) discusses software designs that work, those that don't, and why. A fascinating
book edited by Wixon and Ramsey (Field Methods Casebook for Software Design, Wiley, 1996)
suggests field research methpds (much like those used by anthropologists) to understand how
end-users do the work they do and then provides guidance for designing software that meets
their needs. Beyer and Holtzblatt (Contextual Design: A Customer-Centered Approach to Systems
Designs, Academic Press, 1997) offer another view of software design that integrates the cus-
tomer/user into every aspect of the software design process.

McConnell (Code Complete, Microsoft Press, 1993) presents an excellent discussion of the
practical aspects of designing high-quality computer software. Robertson (Simple Program De-
sign, third edition, Boyd and Fraser Publishing, 1999) offers an introductory discussion of soft-
ware design that is useful for those beginning their study of the subject. Fowler and his
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colleagues (Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999) discuss
techniques for the incremental optimization of software designs.

Over the past decade, many books on pattern-based design have been written for software
engineers. Gamma and his colleagues [GAM95] have written the seminal book on the subject.
Other books by Douglass (Real-Time Design Patterns, Addison-Wesley, 2002), Metsker (Design
Patterns Java Workbook, Addison-Wesley, 2002), Juric et al. (J2EE Design Patterns Applied, Wrox
Press, 2002), Marinescu and Roman (E/B Design Patterns, Wiley, 2002}, and Shalloway and Trott
(Design Patterns Explained, Addison-Wesley, 2001) discuss design patterns in specific application
and language environments. In addition, classic books by the architect Christopher Alexander
(Notes on the Synthesis of Form, Harvard University Press, 1964 and A Pattern Language: Towns,
Buildings, Construction, Oxford University Press, 1977) are must reading for a software designer
who intends to fully understand design patterns.

A wide variety of information sources on design engineering are available on the Internet.
An up-to-date list of World Wide Web references that are relevant to software design and de-
sign engineering can be found at the SEPA Web site:
http://www.mhhe.com/pressman.
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CREATING AN
ARCHITECTURAL DESIGN

esign has been described as a multistep process in which representations

of data and program structure, interface characteristics, and procedural

detail are synthesized from information requirements. This description is
extended by Freeman [FRE80]: )

[Dlesign is an activity concerned with making major decisions, often of a structural
nature. It shares with programming a concern for abstracting information represen-
tation and processing sequences, but the level of detail is quite different at the ex-
tremes. Design builds coherent, well-planned representations of programs that
concentrate on the interrelationships of parts at the higher level and the logical oper-
ations involved at the lower levels. . . .

As we have noted in Chapter 9, design is information driven. Software design
methods are derived from consideration of each of the three domains of the
analysis model. The informational, functional, and behavioral domains serve as a
guide for the creation of the software design.

Methods required to create “coherent, well planned representations” of the
data and architectural layers of the design model are presented in this chapter.
The objective is to provide a systematic approach for the derivation of the archi-
tectural design—the preliminary blueprint from which software is constructed.

’i's dermd‘ during system engineering

ta blqurmt ‘would you?
: blueprints by
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In their landmark book on the subject, Shaw and Garlan [SHA96] discuss software
architecture in the following manner:

Ever since the first program was divided into modules, software systems have had archi-
tectures, and programmers have been responsible for the interactions among the mod-
ules and the global properties of the assemblage. Historically, architectures have been
implicit—accidents of implementation, or legacy systems of the past. Good software de-
velopers have often adopted one or several architectural patterns as strategies for system
organization, but they use these patterns informally and have no means to make them
explicit in the resulting system.

Today, effective software architecture and its explicit representation and design have
become dominant themes in software engineering.

" “The architecture of o system is g comprehensive framework that describes its form and structure—its wmpumms
md how they fit fogether.”

10.1.1 What Is Architecture?

When we discuss the architecture of a building, many different attributes come to
mind. At the most simplistic level, we consider the overall shape of the physical
structure. But in reality, architecture is much more. It is the manner in which the var-
ious components of the building are integrated to form a cohesive whole. It is the
way in which the building fits into its environment and meshes with other buildings
in its vicinity. It is the degree to which the building meets its stated purpose and sat-
isfies the needs of its owner. 1t is the aesthetic feel of the structure—the visual im-
pact of the building—and the way textures, colors, and materials are combined to
create the external facade and the internal “living environment.” 1t is small details—
the design of lighting fixtures, the type of flooring, the placement of wall hangings,
the list is almost endless. And finally, it is art.
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But what about software architecture? Bass, Clements, and Kazman [BAS03] de-
fine this elusive term in the following way:

The software architecture of a program or computing system is the structure or structures
of the system, which comprise software components, the externally visible properties of
those components, and the relationships among them.

The architecture is not the operational software. Rather, it is a representation that
enables a software engineer to (1) analyze the effectiveness of the design in meet-
ing its stated requirements, (2) consider architectural alternatives at a stage when
making design changes is still relatively easy, and (3) reduce the risks associated with
the construction of the software.

Wure in haste, repent at your leisure.”

by Bk

This definition emphasizes the role of “software components” in any architectural
representation. In the context of architectural design, a software component can be
something as simple as a program module or an object-oriented class, but it can also
be extended to include databases and “middleware” that enable the configuration of a
network of clients and servers. .

In this book the design of software architecture considers two levels of the design
pyramid (Figure 9.1)—data design and architectural design. In the context of the pre-
ceding discussion, data design enables us to represent the data component of the ar-
chitecture in conventional systems and class definitions (encapsulating attributes and
operations) in object-oriented systems. Architectural design focuses on the represen-
tation of the structure of software components, their properties, and interactions.

10.1.2 Why Is Architecture Important?

In a book dedicated to software architecture, Bass and his colleagues [BAS03] iden-
tify three key reasons that software architecture is important:

o Representations of software architecture are an enabler for communication
between all parties (stakeholders) interested in the development of a
computer-based system.

e The architecture highlights early desigri decisions that will have a profound
impact on all software engineering work that follows and, as important, on
the ultimate success of the system as an operational entity.

o Architecture “constitutes a relatively small, intellectually graspable model of
how the system is structured and how its components work together” [BAS03].

The architectural design model and the architectural patterns contained within it are
transferable. That is, architecture styles and patterns (Section 10.3.1) can be applied
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to the design of other systems and represent a set of abstractions that enable soft-
ware engineers to describe architecture in predictable ways.

Information of
data wirehouse
tachnologies can
be obtoined ot
www.dutewars
howse.com.

The data design action translates data objects defined as part of the analysis model
(Chapter 8) into data structures at the software component level and, when neces-
sary, a database architecture at the application level. In some situations, a database
must be designed and built specifically for a new system. In others, however, one or
more existing databases are used.

10.2.1 Data Design at the Architectural Level

Today, businesses large and small are awash in data. It is not unusual for even a
moderately sized business to have dozens of databases serving many applications
encompassing hundreds of gigabytes of data. The challenge is to extract useful in-
formation from this data environment, particularly when the information desired is
cross-functional (e.g., information that can be obtained only if specific marketing
data are cross-correlated with product engineering data).

#» difforonce between o data warehouse and a dala garboge dump.”

To solve this challenge, the business IT community has developed data mining
techniques, also called knowledge discovery in databases (KDD), that navigate
through existing databases in an attempt to extract appropriate business-level
information. However, the existence of multiple databases, their different
structures, the degree of detail contained with the databases, and many other fac-
tors make data mining difficult within an existing database environment. An al-
ternative solution, called a data warehouse, adds an additional layer to the data
architecture.

A data warehouse is a separate data environment that is not directly integrated
with day-to-day applications but encompasses all data used by a business [MAT96].
In a sense, a data warehouse is a large, independent database that has access to the
data that are stored in databases that serve the set of applications required by a
business.

A detailed discussion of the design of data structures, databases, and the data
warehouse is best left to books dedicated to these subjects (e.g., [DATO00], [PRE98],
[KIM98]). The interested reader should see the Further Readings and Information
Sources section of this chapter for additional references.
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Data Mining/Warehousing

e/

&%

Q Obijective: Data mining tools assist in the SPSS, developed by SPSS, Inc. {www.spss.com), provides
identification of significant relationships among a wide array of statistical functions to allow the

attributes that describe a specific data object or set of data analysis of large data sets.

obsjects. Tools for data warehousing assist in the design of ~ Data Warehousing:

data models for a data warehouse. Industry Warehouse Studio, developed by Sybase

{www.sybase.com), provides a packaged data

Mechanics: Tool mechanics vary. In general, mining tools > |
warehouse infrastructure that “jumpstarts” data

accept large data sefs as input and allow the user to query boveo desi
the data in an effort to better understand relationships warehouse design. .
among various data ifems. Warehousing fools that are used IFW Business Intelligence Suite, developed by Modelware

for design provide entity relationship or other mode|ing (www.modelwarepl.com), is a set of models, software

capabilifies. tools, and database designs that “provide a fast path
to data warehouse and datamart design and
Representative Tools’ implementation.”
Data Mining: A comprehensive list of data mining/warehousing tools
Business Objects, developed by Business Objects, SA and resources can be found at the Data Warehousing
[www.business objects.com), is a data design tool set Information Center (www.dwinfocenter.org).

hat supports “data integration, query, reporting,
andlysis, and analyfics.”

- _/

10.2.2 Data Design at the Component Level

Data design at the component level focuses on the representation of data structures
that are directly accessed by one or more software components. Wasserman
[WAS80] has proposed a set of principles that may be used to specify and design such
data structures. In actuality, the design of data begins during the creation of the
analysis model. Recalling that requirements analysis and design often overlap, we
consider the following set of principles (adapted from [WAS80]) for data specification:

. What 1. The systematic analysis principles applied to function and behavior should also
' principles be applied to data. Representations of data flow and content should also be
are applicable developed and reviewed, data objects should be identified, alternative data

to data design? organizations should be considered, and the impact of data modeling on soft-

ware design should be evaluated.

2. All data structures and the operations to be performed on each should be identi-
fied. The design of an efficient data structure must take the operations to be
performed on the data structure into account. The attributes and operations
encapsulated within a class satisfy this principle.

3. A mechanism for defining the content of each data object should be established
and used to define both data and the operations applied to it. Class diagrams

1 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.
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{(Chapter 8) define the data items (attributes) contained within a class and the
processing (operations) that are applied to these data items.

4. Low-level data design decisions should be deferred until late in the design process.
A process of stepwise refinement may be used for the design of data. That is,
overall data organization may be defined during requirements analysis, refined
during data design work, and specified in detail during component-level
design.

5. The representation of a data structure should be known only to those modules
that must make direct use of the data contained within the structure. The con-
cept of information hiding and the related concept of coupling (Chapter 9)
provide important insight into the quality of a software design.

6. Alibrary of useful data structures and the operations that may be applied to
them should be developed. A class library achieves this.

7. A software design and programming language should support the specification
and realization of abstract data types. The implementation of a sophisticated
data structure can be made exceedingly difficult if no means for direct speci-
fication of the structure exists in the programming language chosen for im-
plementation.

These principles form a basis for a component-level data design approach that can
be integrated into both the analysis and design activities.

it ——

When a builder uses the phrase “center hall colonial” to describe a house, most peo-
ple familiar with houses in the United States will be able to conjure a general image
of what the house will look like and what the floor plan is likely to be. The builder
has used an architectural style as a descriptive mechanism to differentiate the house
from other styles (e.g., A-frame, raised ranch, Cape Cod). But more importantly, the
architectural style is also a template for construction. Further details of the house
must be defined, its final dimensions must be specified, customized features may be
added, building materials are to be determined, but the style—a “center hall colonial’—
guides the builder in his work.

: "ﬂme is at the back of every ortist's mind,  patiern or type of architecture.”

The software that is built for computer-based systems also exhibits one of many
architectural styles. Each style describes a system category that encompasses (1) a set
of components (e.g.. a database, computational modules) that perform a function re-
quired by a system; (2) a set of connectors that enable “communication, coordination,
and cooperation” among components; (3) constraints that define how components
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can be integrated to form the system; and (4) semantic models that enable a designer
to understand the overall properties of a system by analyzing the known properties
of its constituent parts [BAS03].

An architectural style is a transformation that is imposed on the design of an
entire system. The intent is to establish a structure for all components of the sys-
tem. In the case where an existing architecture is to be reengineered (Chapter 31),
the imposition of an architectural style will result in fundamental changes to the
structure of the software including a reassignment of the functionality of compo-
nents [BOS00].

An architectural pattern, like an architectural style, imposes a transformation on
the design of an architecture. However, a pattern differs from a style in a number of
fundamental ways: (1) the scope of a pattern is less broad, focusing on one aspect of
the architecture rather than the architecture in its entirety; (2) a pattern imposes a
rule on the architecture, describing how the software will handle some aspect of its
functionality at the infrastructure level (e.g., concurrency) [BOS00]; (3) architectural
patterns tend to address specific behavioral issues within the context of the archi-
tectural, e.g., how a real-time application handles synchronization or interrupts. Pat-
terns can be used in conjunction with an architectural style to establish the shape the
overall structure of a system. In the section that follows, we consider commonly used
architectural styles and patterns for software.

10.3.1 A Brief Taxonomy of Architectural Styles

Although millions of computer-based systems have been created over the past 50
years, the vast majority can be categorized (see [SHA96], [BUS96], [BAS03]) into one
of a relatively small number of architectural styles:

Data-centered architecture. A data store (e.g., a file or database) resides at the
center of this architecture and is accessed frequently by other components that up-
date, add, delete, or otherwise modify data within the store. Figure 10.1 illustrates a
typical data-centered style. Client software accesses a central repository. In some
cases the data repository is passive. That is, client software accesses the data inde-
pendent of any changes to the data or the actions of other client software. A variation
on this approach transforms the repository into a “blackboard” that sends notifica-
tions to client software when data of interest to the client changes.

A data-centered architecture promotes integrability {BAS03). That is, existing com-
ponents can be changed and new client components added to the architecture without
concern about other clients (because the client components operate independently). In
addition, data can be passed among clients using the blackboard mechanism (i.e., the
blackboard component serves to coordinate the transfer of information between
clients). Client components independently execute processes.

Data-flow architecture. This architecture is applied when input data are to be
transformed through a series of computational or manipulative components into
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Data-centered
carchitecture

Data store
[repository or
blackboard)

Data-flow
architecture

Pipes and filters

output data. A pipe and filter structure (Figure 10.2) has a set of components, called
Jilters, connected by pipes that transmit data from one component to the next. Each
filter works independently of those components upstream and downstream, is de-
signed to expect data input of a certain form, and produces data output (to the next
filter) of a specified form. However, the filter does not require knowledge of the
workings of its neighboring filters.

# s and styles of design is pervasive in engineering disciplines.”
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m Main program /subprogram architecture

If the data flow degenerates into a single line of transforms, it is termed batch se-
quential. This structure accepts a batch of data and then applies a series of sequential
components (filters) to transform it.

Call and return architecture. This architectural style enables a software de-
signer (system architect) to achieve a program structure that is relatively easy to
modify and scale. Two substyles [BAS03] exist within this category:

e Main program/subprogram architecture. This classic program structure
decomposes function into a control hierarchy where a “main” program
invokes a number of program components, which in turn may invoke still
other components. Figure 10.3 illustrates an architecture of this type.

e Remote procedure call architecture. The components of a main program/
subprogram architecture are distributed across muitiple computers on a
network.

Object-oriented architecture. The components of a system encapsulate data
and the operations that must be applied to manipulate the data. Communication and
coordination between components is accomplished via message passing.

Layered architecture. The basic structure of a layered architecture is illustrated
in Figure 10.4. A number of different layers are defined, each accomplishing opera-
tions that progressively become closer to the machine instruction set. At the outer
layer, components service user interface operations. At the inner layer, components
perform operating system interfacing. Intermediate layers provide utility services
and application software functions.
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Layered
architecture

User interface layer
Application layer §

These architectural styles are only a small subset of those available to the soft-
ware designer.? Once requirements engineering uncovers the characteristics and
constraints of the system to be built, the architectural style or combination of styles
that best fits those characteristics and constraints can be chosen. In many cases,
more than one style might be appropriate, and alternatives might be designed and
evaluated. For example, a layered style (appropriate for most systems) can be com-
bined with a data-centered architecture in many database applications.

SAFEHOME

an Architectural Style

that sort of stuff. So 1
architecture® is the righ
Jamie: But.. . ¢

Ed: But. . . | have froul
oriented architecture
architecture, sort of a
classes, relationships, OO - - I don’tknow. Its

2 See [BOSO00], [HOFOO], [BAS03], [SHA97], [BUS96], and [SHA96] for a detailed discussion of archi-
tectural styles and patterns.

3 It can be argued that the SafeHome architecture should be considered at a higher level than the ar-
chitecture noted. SafeHome has a variety of subsystems—home monitoring functionality, the com-
pany’'s monitoring site, and the subsystem running in the owner’'s PC. Within subsystems,
concurrent processes (e.g. those monitoring sensors) and event handling are prevalent. Some ar-
chitectural decisions at this level are made during system or product engineering (Chapter 6), but
architectural design within software engineering may very well have to consider these issues.
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10.3.2 Architectural Patterns

If a house builder decides to construct a center-hall colonial, there is a single archi-
tectural style that can be applied. The details of the style (e.g., number of fireplaces,
fagade of the house, placement of doors and windows) can vary considerably, but
once the decision on the overall architecture of the house is made, the style is im-
posed on the design.*

Architectural patterns are a bit different.® For example, every house (and every ar-
chitectural style for houses) employs a kitchen pattern. The kitchen pattern defines
the need for placement of basic kitchen appliances, the need for a sink, the need for
cabinets, and possibly, rules for placement of these things relative to workflow in the
room. In addition, the pattern might specify the need for counter tops, lighting, wall
switches, a central island, flooring, and so on. Obviously, there is more than a single
design for a kitchen, but every design can be conceived within the context of the “so-
lution” suggested by the kitchen pattern.

As we have already noted, architectural patterns for software define a specific ap-
proach for handling some behavioral characteristic of the system. Bosch {BOS00] de-
fines a number of architectural pattern domains. Representative examples are provided
in the paragraphs that follow.

Concurrency. Many applications must handle multiple tasks in a manner that sim-
ulates parallelism (i.e., this occurs whenever multiple “parallel” tasks or components
are managed by a single processor). There are a number of different ways in which an

4 This implies that there will be a central foyer and hallway, that rooms will be placed to the left and
right of the foyer, that the house will have two (or more) stories, that the bedrooms of the house
will be upstairs, and so on. These “rules"” are imposed once the decision is made to use the center-
hall colonial style.

5 Itis important to note that there is not universal agreement on this terminology. Some people (e.g.,
[BUS96]) use the terms styles and patterns synonymously, while others make the subtle distinction
suggested in this section.
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application can handle concurrency, and each can be presented by a different archi-
tectural pattern. For example, one approach is to use an operating system process man-
agement pattern that provides built-in OS features that allow components to execute
concurrently. The pattern also incorporates OS functionality that manages communi-
cation between processes, scheduling, and other capabilities required to achieve con-
currency. Another approach might be to define a task scheduler at the application
level. A task scheduler pattern contains a set of active objects that each contains a tick()
operation [BOS00]. The scheduler periodically invokes tick() for each object, which
then performs the functions it must perform before returning control back to the
scheduler, which then invokes the tick() operation for the next concurrent object.

Persistence. Data persists if it survives past the execution of the process that cre-
ated it. Persistent data are stored in a database or file and may be read or modified
by other processes at a later time. In object-oriented environments, the idea of a per-
sistent object extends the persistence concept a bit further. The values of all of the
object’s attributes, the general state of the object, and other supplementary infor-
mation are stored for future retrieval and use. In general, two architectural patterns
are used to achieve persistence—a database management system pattern that applies
the storage and retrieval capability of a DBMS to the application architecture or an
application level persistence pattern that builds persistence features into the applica-
tion architecture (e.g., word processing software that manages its own document
structure).

Distribution. The distribution problem addresses the manner in which systems or
components within systems communicate with one another in a distributed envi-
ronment. There are two elements to this problem: (1) the way in which entities con-
nect to one another, and (2) the nature of the communication that occurs. The most
common architectural pattern established to address the distribution problem is the
broker pattern. A broker acts as a “middle-man” between the client component and
a server component. The client sends a message to the broker (containing all ap-
propriate information for the communication to be effected), and the broker com-
pletes the connection. CORBA (Chapter 30) is an example of a broker architecture.

Before any one of the architectural patterns noted in the preceding paragraphs
can be chosen, it must be assessed for its appropriateness for the application and the
overall architectural style, as well as its maintainability, reliability, security, and per-
formance.

10.3.3 Organization and Refinement

Because the design process often leaves a software engineer with a number of ar-
chitectural alternatives, it is important to establish a set of design criteria that can be
used to assess an architectural design. The following questions [BAS03] provide in-
sight into the architectural style that has been derived.
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Control. How is control managed within the architecture? Does a distinct con-
trol hierarchy exist, and if so, what is the role of components within this control hi-
erarchy? How do components transfer control within the system? How is control
shared among components? What is the control topology (i.e., the geometric form
that the control takes)? Is control synchronized or do components operate asyn-
chronously?

Data. How are data communicated between components? Is the flow of data
continuous, or are data objects passed to the system sporadically? What is the
mode of data transfer (i.e., are data passed from one component to another or are
data available globally to be shared among system components)? Do data compo-
nents (e.g., a blackboard or repository) exist, and if so, what is their role? How do
functional components interact with data components? Are data components pas-
sive or active (i.e., does the data component actively interact with other compo-
nents in the system)? How do data and control interact within the system?

These questions provide the designer with an early assessment of design quality and
lay the foundation for more detailed analysis of the architecture.

%S
o,
POINT
Architectural context
represents how the
software interacts with
enfities external fo ifs
boundaries.

As architectural design begins, the software to be developed must be put into context—
that is, the design should define the external entities (other systems, devices, people)
that the software interacts with and the nature of the interaction. This information can

generally be acquired from the analysis model and all other information gathered dur-
ing requirements engineering. Once context is modeled and all external software in-
terfaces have been described, the designer specifies the structure of the system by
defining and refining software components that implement the architecture. This
process continues iteratively until a complete architectural structure has been derived.

s istokes , bt an architect can only advise his cient 1o plan vines.

10.4.1 Representing the System in Context

In Chapter 6, we noted that a system engineer must model context. A system con-
text diagram (Figure 6.4) accomplishes this requirement by representing the flow of
information into and out of the system, the user interface, and relevant support pro-
cessing. At the architectural design level, a software architect uses an architectural
context diagram (ACD) to model the manner in which software interacts with enti-
ties external to its boundaries. The generic structure of the architectural context di-
agram is illustrated in Figure 10.5.

Referring to the figure, systems that interoperate with the target system (the sys-
tem for which an architectural design is to be developed) are represented as:
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e Superordinate systems—those systems that use the target system as part of
some higher level processing scheme.

e Subordinate systems—those systems that are used by the target system and
provide data or processing that are necessary to complete target system
functionality.

e Peer-level systems—those systems that interact on a peer-to-peer basis (i.e.,
information is either produced or consumed by the peers and the target
system).

e Actors—those entities (people, devices) that interact with the target system by
producing or consuming information that is necessary for requisite
processing.

Each of these external entities communicates with the target system through an in-
terface (the small shaded rectangles).

To illustrate the use of the ACD we again consider the home security function of
the SafeHome product. The overall SafeHome product controller and the Internet-
based system are both superordinate to the security function and are shown above
the function in Figure 10.6. The surveillance function is a peer system and uses (is
used by) the home security function in later versions of the product. The homeowner
and control panels are actors that are both producers and consumers of information
used/produced by the security software. Finally, sensors are used by the security
software and are shown as subordinate to it.

As part of the architectural design, the details of each interface shown in Figure
10.6 would have to be specified. All data that flow into and out of the target system
must be identified at this stage.
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10.4.2 Defining Archetypes

An archetype is a class or pattern that represents a core abstraction that is critical to
the design of an architecture for the target system. In general, a relatively small set
of archetypes is required to design even relatively complex systems. The target sys-
tem architecture is composed of these archetypes, which represent stable elements
of the architecture but may be instantiated in many different ways based on the be-
havior of the system.

In many cases, archetypes can be derived by examining the analysis classes de-
fined as part of the analysis model. Continuing our discussion of the SafeHome home
security function, we might define the following archetypes:

¢ Node. Represents a cohesive collection of input and output elements of the
home security function. For example a node might be comprised of
(1) various sensors, and (2) a variety of alarm (output) indicators.

e Detector. An abstraction that encompasses all sensing equipment that feeds
information into the target system.

¢ Indicator. An abstraction that represents all mechanisms (e.g., alarm siren,
flashing lights, bell) for indicating that an alarm condition is occurring.

e Controller. An abstraction that depicts the mechanism that allows the
arming or disarming of a node. If controllers reside on a network, they have
the ability to communicate with one another.

Each of these archetypes is depicted using UML notation as shown in Figure 10.7.



